AD-A103 881 WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER

UNCLASSIFIED MRC-TSR=-2250

1 E
ll . 0 8!

END
fineo

oTig

F/6 12/%
AN INTEGRAL OF PRODUCTS OF LEGENDRE FUNCTIONS AND A CLEBSCH=GOR-=ETC({Y)
JUL 81 R ASKEY DAAG29~-80=C=0041

NL




MRC Technical Summary Report # 2250

AN INTEGRAL OF PRODUCTS OF
LEGENDRE FUNCTIONS AND A
CLEBSCH-GORDAN SUM

ADA103881

Richard Askey

- Mathematics Research Center /’
- University of Wisconsin—Madison -~ ¢ /

. P - —~

: 610 Walnut Street e

Madison, Wisconsin 53706 S

July 1981 v / / N

; pras DTIC
b < - . EEL_EE(:’FEilgilq
'3 - (Received July 2, 1981) ‘ S

+ JEY Y ! SEP8 1981
':‘ ‘ 4 I ’ CERS
LEIC _ Lo

% - »
. - <2, v A

e ’é
. Ve Approved for public release
=
g % Distribution unlimited
Sponsored by
4 U. S. Army Research Office and National Science Foundation
- . P. O. Box 12211 Washington, DC 20550
% Research Triangle Park
N North Carolina 27709

( . .




UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

AN INTEGRAL OF PRODUCTS OF LEGENDRE FUNCTIONS
AND A CLEBSCH~GORDAN SUM

Richard Askey*
Technical Summary Report #2250
July 1981

\ ABSTRACT

New proofs and extensions are given of a sum considered by A. M. Din
involving Clebsch-Gordan coefficients with zero magnetic quantum numbers and
of an integral involving the product of three legendre functions, one of the
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AN INTEGRAL OF PRODUCTS OF LEGENDRE FUNCTIONS
AND A CLEBSCH-GORDAN SUM

Richard Askey’

Din {1] showed that

s = °§b Ty ety (Ciome oy ‘”
i=|c-b|
i/a

when a, b and c are nén-negative integers with a +b + ¢ o044 and
| e=b| g a < ctbe The Clebsch-Gordan coefficients with zero magnetic quantum

numbers are given by

2
,c0 o 2ct1
(cfope) =2 [1, &xe, (xie (1P (x) 2)

This inteqral was evaluated by Ferrers and others in the last century. The
evaluation comes from the linearization formula
Pn(x)Pn(x) =

min(m,n) 05) 40 . &, (mink) 1 (min-2x+ V) (3)
m~k n=k k p (x)
m-k) 1 (n-k)tk1Ch) _ _ (min-k+ ) m4n=-2k ’

k=0

and the orthogonality of Legendre polynomials. See [2). To show (1) Din
reduced it to showing that

I(a,b,0) 1= 1 @ o tx)p, ()P _x) = 0 (4)
when a, b, ¢ 2> 1 are integers, a +b + c is odd and |c-al < b < cta.
Here Pi(x) is the Legendre polynomial and Q‘(x) is the Legendre function
of the second kind on the cut [~1,1). He ended the paper by stating that I

could evaluate (4) for general integers a, b, c. The details follow.
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‘ .,
‘ Din started with
| 1 1 ~ cos(b-a)¥ '
- [, axguop 0 = 2R p 1, a kb (5) i
"f with a reference to [3]. A generalization of (5) is given there when a 'S

and b are complex, Re a > 0, Re b > 0, and the extra term which occurs
vanishes when either a or b is an integer. The argument in [3) used the

Legendre differential equation. Here is a second derivation of (5). Start

PR S

with an expansion of Heine (4]

R VI

= ), (as1)

2al y 1

cos(a+2i+1)8

N Qa(cos 0) = 3
: ("2-)a i=0 il(a+ E)i
i
‘ The shifted factorial (c)  is defined by
(c) = Ttntc)/T(c) = cleHt)*+e(cim=1) .
. Since P,(-x) = (-1)’Pa(x) and Q,(-x) = (-I)aﬂQa(x), a=0,1,..0, Wwe may ¥
) assume a and b have opposite parity, for the integral in (5) vanishes
when a and b have the same parity. Then
\ @ ) (at+1)
- I(a,b,0) = 22 L 1 (" 30 cos(a+21+1)8 sin 8 P, (cos 8)
: S) 1m0 s1(a+ D), O° b
- 2°a 2°1
& 84 (a+1), (a+2i41) (i+(atb=1)/2)1(- V)
5 - 23.1 274 i — 2 'i+(at1-b)/2
g (-2")a i=0 it (a+ 3)1(-5)i+(a+h+1)/2(1+(a+1-b)/2)l
by a special case of an integral of Gegenbauer which is equivalent to [5)
b n
3] - -
3 c:(x) } 2 (u)n?;i:)k)kl(:: ikﬂ) c:_zk(x) '
! Je=0 n~-k
f‘ where c:(x) is the ultraspherical polynomial.

The above sum can be written as a generalized hypergeometric series and
then summed by a formula of Dougall [6]. A more general sume of Dougall will
be stated below. A routine reduction shows that (5) holds when
a,b=0,1,..., with the integral equal to zero when a = b,

4
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To compute the evaluation of (4) use the Ferrers~Adams linearization
formula (3) and (5) to obtain

bie) ), 0p) | ), (bre=k) 1 (bre-2k+ V5 )
(b=k) ! (c=k) k! (/p )Mc_ktwc-kﬂ/z ) ’

min§
I(a,b,c) =
k=0

[1-cos(bt+c~2k~a)¥]
{(b+c-a~2k) (b+cta+1-2k)

[1-cos(bre-a) W) (), ) _(bHe)t
(b+c-a) (b+c+a+1)bic! (/5 Ve

“bec- Yy ,-b/2-c/2+ 2,-b,-c Y ,(a-b-C) /2, (~1-a-b-c) /2

F 1 1)

78" —b/2-c/2- LYy ~c My -b,-bc, (1-a-b-c)/2, (24a~b-c)/2

Dougall's sum of the very well poised 2-balanced 7F6 7,

» a,1+a/2,b,c,4,e,-n 1)
7°6‘a/2,1+a-b, 1+a-c, 1+a-d, 1+a~e, 1+a+n '

(8)
(1+a)n(1+a-b-c)n(1+a-b—d)n(1+a-c-d)n

(1+a-b) (1+a-c) (1+a-d)_ (1+a-c-d)
n n n n

when 1+2a = b+c+d+e-n, can be used and the result is

1
[_y & 9, (R (x)P _(x)

9)
[1-cos(b+c-a)'l](-(b+c+a)/a)c((b~c-a+1)/2)c

= (b¥c-a) (btc+a+l) (- (brcta-1)/2) _((b-c-a)/2)_

when 0 £ b s at+b+c o0d4, and zero when a+b+c 1is even. Since this

integral vanishes wvhen btcta 1is even, we may write a = btc+1+2k. The

integral is then




1
y [y & Qp,igea (X Py(xIB_(x)

| (10)
_ T (k+b+c+ %)I‘(k+b+1)l'(k+c+1 (ks 1) .

2T (k+b+c+2) T (kebt+ %)r(k+c+ %)I‘(k-ﬂ) |

This integral vanishes when k = =1,-2,...,~ min(b,c) as was shown by Din.

e b

Since (5) holds when a is not an integer, and the rest of the above
argument only used the integrality of b and ¢, formula (8} continues to

hold when Re a bd 0. In this case it is better to write it as

VSR S VU U

b-c-a
)T( 2 )

(btc-a) (bevast I (22 p 2recetd,

[1~cos(btc-a)®) * I‘("'lz"'l

1
f_, ax Q (x)P, (x)P (x) =

(11) '

-a 4 - +
I.(lrl‘c a 1)” b-~c~a 1)

, 2 2
k- 2
rse)rceee,

’ Reaz 0, b,C'O,‘l,...,

with an appropriate limit taken when one of the gamma functions has a pole.
The sum in (1) can be evaluated in exactly the same way, only the details

are easier. One only needs to use (2) to replace the Clebsch-Gordan

coefficients by a known integral, rewrite the series as a generalized

hypergeometric seriegs and use Dougall’s sum (8). PFortunately Din was unaware

of Dougall'’s sum, for the integral in (11) seems to be a fundamental result,

and it des not seem to have been evaluated before. I was surprised by this,
since Hobson (8] wrote that F, E, Neumann had evaluated this integral.
However it is not given in the book of Neumann that Hobson mentions nor in the
other book of Neumann that I have looked at.
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